从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有______种.
题型:宁波二模难度:来源:
从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有______种. |
答案
若选的3人中选了甲:共有=40种选法 若选的3人中不选甲:共有=60种 根据分类计数原理可知,共有40+60=100 故答案为:100 |
举一反三
设集合S={a0,a1,a2,a3,a4},在上定义运算⊕为:ai⊕aj=ak,其中k为i+j被5除的余数,i,j=0,1,2,3,4,则满足关系式:(x⊕x)⊕a2=a0的x(x∈S)的个数为( ) |
用1,2,3,4,5,6六个数字组成没有重复数字的六位数,要求任何相邻两个数字的奇偶不同,这样的六位数共有______个(用数字作答). |
五位同学参加比赛,决出了第一到第五的名次,评委告诉甲、乙两位同学,你们俩都没拿到冠军,但乙不是最差的,则五位同学不同排名顺序的种数是______.(用数字作答). |
从0,1,2,3,4这五个数字中,任取三个组成没有重复数字的三位数,其中偶数的个数是______.(用数字作答) |
最新试题
热门考点