(本小题8分)如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三

(本小题8分)如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三

题型:不详难度:来源:
(本小题8分)
如图,点为斜三棱柱的侧棱上一点,于点于点.

(1) 求证:
(2) 在任意中有余弦定理:. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式(只写结论,不必证明)
答案
(1)见解析;
(2) 在斜三棱柱中,有,其中为 平面与平面所组成的二面角.
解析
(1)本小题可通过证明,再证明,即可得到要证结论。
(2)根据类比规则,把三角形当中的边长类比成三棱柱中的侧面面积。所以可得结论为

解:(1) 证:;-3分
(2) 解:在斜三棱柱中,有,其中为 平面与平面所组成的二面角. ------------------8分
(以下证明学生不必证明)
上述的二面角为,在中,

由于
∴有.  _______8分
举一反三
(本小题9分)
如图,四棱锥S—ABCD的底面是正方形,SD平面ABCD,SD=2a,,点E是SD上的点,且

(Ⅰ)求证:对任意的,都有
(Ⅱ)设二面角C—AE—D的大小为,直线BE与平面ABCD所成的角为,若,求的值
题型:不详难度:| 查看答案
如图,已知球的半径为,球内接圆锥的高为,体积为
 
(1)写出以表示的函数关系式
(2)当为何值时,有最大值,并求出该最大值.
题型:不详难度:| 查看答案
如图,平面四边形中,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一个球面上,则该球的体积为 (     )
A.B.
C.D.

题型:不详难度:| 查看答案
已知正三棱锥P—ABC的各棱长都为2,底面为ABC,棱PC的中点为M,从A点出发,在三棱锥P—ABC的表面运动,经过棱PB到达点M的最短路径之长为        
题型:不详难度:| 查看答案
如图,已知四棱锥P—ABCD中,底面ABCD是直角梯长,AB//CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1。
(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求三棱锥M—ACD的体积。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.