在四棱锥中,,,且DB平分,E为PC的中点,, PD=3,(1)证明   (2)证明(3)求四棱锥的体积。

在四棱锥中,,,且DB平分,E为PC的中点,, PD=3,(1)证明   (2)证明(3)求四棱锥的体积。

题型:不详难度:来源:
在四棱锥中,,且DB平分,E为PC的中点,, PD=3,(1)证明   (2)证明
(3)求四棱锥的体积。
答案
解:(1) 证明:设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又由题设知E为PC的中点,故,
,
所以
(2)证明:因为
所以
由(1)知,,

(3)四棱锥的体积为2
解析

举一反三
三棱锥S—ABC中,SA⊥底面ABCSA=4,AB=3,DAB的中点∠ABC=90°,则点D到面SBC的距离等于  
A.      B         C.                    D.
题型:不详难度:| 查看答案
空间三条射线PA,PB,PC满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C 的度数                                                                             
A.等于90°B.是小于120°的钝角
C.是大于等于120°小于等于135°的钝角D.是大于135°小于等于150°的钝角

题型:不详难度:| 查看答案
如图,点P是边长为1的菱形ABCD外一点,ECD的中点,

(1)证明:平面平面PAB;  
(2)求二面角ABEP的大小。
题型:不详难度:| 查看答案
如图所示,在斜边为AB的Rt△ABC中,过APA⊥平面ABCAMPBM
ANPCN.

(1)求证:BC⊥面PAC
(2)求证:PB⊥面AMN.
(3)若PA=AB=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?
题型:不详难度:| 查看答案
 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.