(本题满分分)在边长为的正方体中,是的中点,是的中点,(1)求证:∥平面;(2)求点到平面的距离;(3)求二面角的平面角大小的余弦值.

(本题满分分)在边长为的正方体中,是的中点,是的中点,(1)求证:∥平面;(2)求点到平面的距离;(3)求二面角的平面角大小的余弦值.

题型:不详难度:来源:
(本题满分分)在边长为的正方体中,
的中点,的中点,
(1)求证:平面
(2)求点到平面的距离;
(3)求二面角的平面角大小的余弦值.

答案

(1)
(2)
解析
(1)分别以DA,DC,DD1为x轴,y轴,z轴建立空间直角坐标系,则A1(2,0,2),

E(1,2,0),D(0,0,0), C(0,2,0), F(0,0,1),

设平面A1DE的法向量是

      5分
,
,所以,CF∥平面A1DE。7分
(也可取A1D中点M,连接MF、ME,证明FC∥ME即可)
(2)A(2,0,0),点A到平面A1DE的距离是
9分
(3)是面AA1D的法向量,  
二面角的平面角大小的余弦值为            12分
举一反三
(本小题满分12分)
如图,三棱锥中,底面
,点,点分别是的中点.

(1) 求证:侧面⊥侧面;
(2) 求点到平面的距离;
(3) 求异面直线所成的角的余弦.
题型:不详难度:| 查看答案
(本小题满分13分)
  已知:如图,长方体中,分别是棱,上的点,,.
  (1) 求异面直线所成角的余弦值;
  (2) 证明平面
  (3) 求二面角的正弦值.
                  
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.
题型:不详难度:| 查看答案
(本小题满分14分)
如图, 在四棱锥中,顶点在底面上的射影恰好落在的中点上,又∠,且
=1:2:2.

(1) 求证:  
(2) 若, 求直线所成的角的余弦值;
(3) 若平面与平面所成的角为, 求的值
题型:不详难度:| 查看答案
(本小题共12分) 如图,△ACD是等边三角形,△ABC是等腰直角
三角形,∠ACB=90°,BD交AC于E,AB=2.
(1)求cos∠CBE的值;(2)求AE。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.