如图,长方体中,,点E是AB的中点.(1)求三棱锥的体积;(2)证明: ; (3)求二面角的正切值.

如图,长方体中,,点E是AB的中点.(1)求三棱锥的体积;(2)证明: ; (3)求二面角的正切值.

题型:不详难度:来源:
如图,长方体中,,点E是AB的中点.

(1)求三棱锥的体积;
(2)证明: ; 
(3)求二面角的正切值.
答案
(1)1;(2)详见解析;(3)
解析

试题分析:(1)求四面体的体积,当高不好确定时候,可考虑等体积转化,该题中,高,可求体积;(2)证明直线和直线垂直,可先证明直线和平面垂直,由,从而,所以,(3) 求二面角的平面角,可以利用几何法,先找到二面角的平面角,然后借助平面图形去计算,∵,所以,进而可证,就是的平面角,二面角也可以利用空间向量法,建立适当的空间直角坐标系,把相关点的坐标表示出来,计算两个半平面的法向量,进而求法向量的夹角,然后得二面角的余弦值.
试题解析:(1)解:在三棱锥D1-DCE中,D1D⊥平面DCE,D1D=1
在△DCE中,
CD=2,CD2=CE2+DE2  ∴CE⊥DE.

∴三棱锥D1-DCE的体积. =                    4分
(2)证明:连结AD1,由题可知:四边形ADD1A1是正方形
∴A1D⊥AD1 又∵AE⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E  ABAD1=A
∴A1D⊥平面AD1E 又∵D1E平面AD1E
∴A1D⊥D1E                                               8分
(3)根据题意可得:D1D⊥平面ABCD
又因为CE平面ABCD,所以D1D⊥CE。
又由(1)中知,DE⊥CE,D1D平面D1DE,DE平面D1DE,D1DDE=D,
∴CE⊥平面D1DE,又∵D1E平面D1DE ∴CE⊥D1E.
∴∠D1ED即为二面角D1―EC―D的一个平面角.
在Rt△D1DE中,∠D1DE=90°,D1D="1," DE=
 
∴二面角D1―ED―D的正切值是                         12分
举一反三
已知直角三角形ABC,其三边分为a、b、c(a>b>c).分别以三角形的a边,b边,c边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为S1,S2,S3和V1,V2,V3.则它们的关系为(  )
A.S1>S2>S3, V1>V2>V3B.S1>S2>S3, V1=V2=V3
C.S1<S2<S3, V1<V2<V3D.S1<S2<S3, V1=V2=V3

题型:不详难度:| 查看答案
已知各顶点都在一个球面上的正四棱柱的高为2,这个球的表面积为12π,则这个正四棱柱的体积为   .
题型:不详难度:| 查看答案
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.
题型:不详难度:| 查看答案
棱长都是1的三棱锥的表面积为(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图直三棱柱ABC﹣A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B﹣APQC的体积为(  )
   
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.