要做一个圆锥形漏斗,其母线长为10cm,要使体积为最大,则其高应为 ▲ cm.

要做一个圆锥形漏斗,其母线长为10cm,要使体积为最大,则其高应为 ▲ cm.

题型:不详难度:来源:
要做一个圆锥形漏斗,其母线长为10cm,要使体积为最大,则其高应为 ▲ cm.
答案

解析
解:解:设圆锥的高为x,
则底面半径为
其体积为V=1/3πx()(0<x<10),
V′=1/3π(),令V′=0,
解得x1=,x2=-(舍去).
当0<x<时,V′>0;
<x<10时,V′<0;
∴当x=时,V取最大值.
举一反三
二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)Sπr2;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)Vπr3;四维空间中“超球”的三维测度V=8πr3,则猜想其四维测度    .
题型:不详难度:| 查看答案
一个空间几何体的正视图、侧视图是两个边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的体积等于_______________
题型:不详难度:| 查看答案
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
题型:不详难度:| 查看答案
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且2PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(Ⅰ)求异面直线EF与AG所成角的余弦值;
(Ⅱ)求证:BC∥面EFG;
(Ⅲ)求三棱锥E-AFG的体积.
题型:不详难度:| 查看答案
已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为
A.1B.C.2D.3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.