(I)证明:由图2,A1A2A3D为直角梯形, 得A1B⊥A1D,A2B⊥A2C. 即图1中,AB⊥AC,AB⊥AD. 又AC∩AD=A,∴AB⊥面ACD. ∵CD⊂面ACD,∴AB⊥CD. (II)在图2中,作DE⊥A2A3于E, ∵A1A2=8,∴DE=8, 又∵A1D=A3D=10,∴EA3=6,∴A2A3=10+6=16. 而A2C=A3C,∴A2C=8,即图1中AC=8,AD=10. 由A1A2=8,A1B=A2B,得图1中AB=4. S△ACD=S△A3CD=×8×8=32. 由(I)知,AB⊥面ACD,∴VB-ACD=×32×4=. |