已知四面体ABCD(图1),沿AB、AC、AD剪开,展成的平面图形正好是图2所示的直角梯形A1A2A3D(梯形的顶点A1、A2、A3重合于四面体的顶点A).(1

已知四面体ABCD(图1),沿AB、AC、AD剪开,展成的平面图形正好是图2所示的直角梯形A1A2A3D(梯形的顶点A1、A2、A3重合于四面体的顶点A).(1

题型:青州市模拟难度:来源:
已知四面体ABCD(图1),沿AB、AC、AD剪开,展成的平面图形正好是图2所示的直角梯形A1A2A3D(梯形的顶点A1、A2、A3重合于四面体的顶点A).
(1)证明:AB⊥CD.
(2)当A1D=10,A1A2=8时,求四面体ABCD的体积.

魔方格
答案


魔方格
(I)证明:由图2,A1A2A3D为直角梯形,
得A1B⊥A1D,A2B⊥A2C.
即图1中,AB⊥AC,AB⊥AD.
又AC∩AD=A,∴AB⊥面ACD.
∵CD⊂面ACD,∴AB⊥CD.
(II)在图2中,作DE⊥A2A3于E,
∵A1A2=8,∴DE=8,
又∵A1D=A3D=10,∴EA3=6,∴A2A3=10+6=16.
而A2C=A3C,∴A2C=8,即图1中AC=8,AD=10.
由A1A2=8,A1B=A2B,得图1中AB=4.
S△ACD=SA3CD=
1
2
×8×8=32

由(I)知,AB⊥面ACD,∴VB-ACD=
1
3
×32×4=
128
3
举一反三
侧棱长为1的正四棱锥,如果底面周长是4,则这个棱锥的侧面积是______.
题型:不详难度:| 查看答案
如图,已知三棱锥S-ABC中,底面△ABC是边长为2的正三角形,SC=1,∠SCA=90°,侧面SAC与底面ABC所成二面角为60°,E、D分别为SA和AC的中点.
(1)求点S到平面BDE的距离;
(2)求三棱锥S-ABC的体积.魔方格
题型:不详难度:| 查看答案
在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为______.
题型:不详难度:| 查看答案
如图①,四边形ABCD是矩形,AB=2AD=2a,E为AB的中点,在四边形ABCD中,将△AED沿DE折起,使A到A′位置,且A′M⊥BC,得到如图②所示的四棱锥A′-BCDE.
(Ⅰ)求证:A′M⊥平面BCDE;
(Ⅱ)求四棱锥A′-BCDE的体积;
(Ⅲ)判断直线A′D与BC的位置关系.魔方格
题型:不详难度:| 查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2,E、F、G分别为PC、PD、BC的中点.
(I)求证:PA平面EFG;
(II)求三棱锥P-EFG的体积.魔方格
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.