如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=12AP,D是AP的中点,E、F分别为PC、PD的中点,将△PCD沿CD折起得到四棱锥P-ABC

如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=12AP,D是AP的中点,E、F分别为PC、PD的中点,将△PCD沿CD折起得到四棱锥P-ABC

题型:不详难度:来源:
如图,在直角梯形ABCP中,APBC,AP⊥AB,AB=BC=
1
2
AP
,D是AP的中点,E、F分别为PC、PD的中点,将△PCD沿CD折起得到四棱锥P-ABCD,
(Ⅰ)G为线段BC上任一点,求证:平面EFG⊥平面PAD;
(Ⅱ)当G为BC的中点时,求证:AP平面EFG.魔方格
答案
证明:(I)∵△PDC中,E、F分别是PD、PC的中点,∴EFCD,
∵CD⊥PD,CD⊥AD,PD∩AD=D
∴CD⊥平面PAD,
∴EF⊥平面PAD,
∵EF⊂平面EFG,
∴平面EFG⊥平面PAD; 
(II)∵G为BC的中点,F为PD的中点,
∴GFBP
∵GF⊄平面PAB,BP⊂平面PAB,
∴GF平面PAB,
由(I)知,EFDC
∵ABDC,∴EFAB
∵EF⊄平面PAB,AB⊂平面PAB,
∴EF平面PAB,
∵EF∩GF=F
∴平面EFG平面PAB
∵PA⊂平面PAB
∴AP平面EFG.
举一反三
如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).
(Ⅰ)求证:λ取不等于0的任何值时都有BO1平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.魔方格
题型:不详难度:| 查看答案
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,BC=


2
,凸多面体ABCED的体积为
1
2
,F为BC的中点.
(Ⅰ)求证:AF平面BDE;
(Ⅱ)求证:平面BDE⊥平面BCE.魔方格
题型:浙江模拟难度:| 查看答案
如图,已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.
(Ⅰ)求证:PA平面BFD;
(Ⅱ)求二面角C-BF-D的余弦值.魔方格
题型:不详难度:| 查看答案
已知直三棱柱ABC-A1B1C1中,D,E分别为AA1,CC1的中点,AC⊥BC,点F在线段AB上,且AB=4AF.
(Ⅰ)求证:BC⊥C1D;
(Ⅱ)若M为线段BE上一点,BE=4ME求证:C1D平面B1FM.魔方格
题型:不详难度:| 查看答案
如图,已知正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C平面AB1D;
(3)求二面角B-AB1-D的正切值.魔方格
题型:肇庆二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.