如图,AB是⊙O的直径,PA垂直⊙O所在的平面,C为⊙O上一点,AB=2,AC=1,二面角P-BC-A为。(1)求证:BC⊥平面PAC;(2)求三棱锥P-ABC

如图,AB是⊙O的直径,PA垂直⊙O所在的平面,C为⊙O上一点,AB=2,AC=1,二面角P-BC-A为。(1)求证:BC⊥平面PAC;(2)求三棱锥P-ABC

题型:0127 模拟题难度:来源:
如图,AB是⊙O的直径,PA垂直⊙O所在的平面,C为⊙O上一点,AB=2,AC=1,二面角P-BC-A为
(1)求证:BC⊥平面PAC;
(2)求三棱锥P-ABC的体积;
(3)求点A到面PBC的距离。
答案
解:(1)∵所在平面,且的弦

的直径



(2)由
又由(1)知
所以是二面角的平面角

,AC=1


(3)设点到面距离为h



举一反三
如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点,
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B-PC-D的大小为时,求PC与底面ABCD所成角的正切值.
题型:0107 模拟题难度:| 查看答案
如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠ABC=45°,直角梯形ABCD与矩形ADQP所在平面垂直,将矩形ADQP沿PD对折,使得翻折后点Q落在BC上,设DC=1。
(1)求证:AQ⊥DQ;
(2)求线段AD的最小值,并指出此时点Q的位置;
(3)当AD长度最小时,求直线BD与平面PDQ所成的角的正弦值。
题型:模拟题难度:| 查看答案
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC∩BD=G。
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD;
(3)求三棱锥C-BGF的体积。
题型:0108 模拟题难度:| 查看答案
如下图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,圆柱OQ的底面圆的半径OA=2,侧面积为8π,∠AOP=120°。
(1)求证:AG⊥BD;
(2)求二面角P-AG-B的平面角的余弦值。
题型:0108 模拟题难度:| 查看答案
如图,在三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB,
(1)求证:AB⊥平面PCB;
(2)求二面角C-PA-B的余弦值.
题型:模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.