在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面

题型:不详难度:来源:
在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=


2
BB1
.求证:
(1)平面A1EC平面AB1D;
(2)平面A1BC1⊥平面AB1D.
答案
证明:(1)∵点D,E分别是BC,B1C1的中点,
∴A1EAD,ECB1D,
∴A1E平面AB1D,
又∵A1E∩EC=E,∴平面A1EC平面AB1D.
(2)∵△ABC是正三角形,点D是BC的中点,
∴AD⊥BC,
又∵平面ABC⊥平面BCC1B1
∴AD⊥平面BCC1B1
∴AD⊥BC1
又∵点D是BC的中点,BC=


2
BB1

BD=


2
2
BB1
BB1=


2
2
B1C1

BD
BB1
=
BB1
B1C1
,∴△BDB1△B1BC1
故∠BDB1=∠B1BC1,即∠BDF=∠B1BF,
∠BDF+∠DBF=∠B1BF+∠DBF=900,∠BFD=90°,
∴BF⊥B1D,即BC1⊥B1D,从而BC1⊥平面AB1D.
又BC1⊂平面A1BC1,所以平面A1BC1⊥平面AB1D.
举一反三
如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B平面B1CD,求A1D:DC1的值.
题型:不详难度:| 查看答案
如图四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上,O为AC与BD的交点.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB中点时,求证:OE平面PDA,OE平面PDC.
(3)当PD=


2
AB
且E为PB的中点时,求AE与平面PBC所成的角的大小.
题型:不详难度:| 查看答案
已知某几何体的三视图如下图所示,其中俯视图为正三角形,设D为AA1的中点.
(Ⅰ)作出该几何体的直观图并求其体积;
(Ⅱ)求证:平面BB1C1C⊥平面BDC1
(Ⅲ)BC边上是否存在点P,使AP平面BDC1?若不存在,说明理由;若存在,证明你的结论.
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA平面BDE;
(2)证明:平面BDE⊥平面PBC.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.