如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的大小是(    )(结果用反三角函数值表示)

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的大小是(    )(结果用反三角函数值表示)

题型:上海高考真题难度:来源:
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的大小是(    )(结果用反三角函数值表示)。

答案
举一反三
如图,α和β为平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2。若二面角α-l-β的大小为
求:(Ⅰ)点B到平面α的距离;
(Ⅱ)异面直线l与AB所成的角(用反三角函数表示)。

题型:重庆市高考真题难度:| 查看答案
如图,若正四棱柱ABCD-A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(    )(结果用反三角函数值表示)。

题型:上海高考真题难度:| 查看答案
如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F、G分别是棱C1D1,AA1的中点。设点E1,G1分别是点E,G在平面DCC1D1内的正投影,
(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的正投影为底面边界的棱锥的体积;
(2)证明:直线FG1⊥平面FEE1
(3)求异面直线E1G1与EA所成角的正弦值。

题型:广东省高考真题难度:| 查看答案
如图,在五棱锥S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=,∠BAE=∠BCD=∠CDE=120°,
(Ⅰ)求异面直线CD与SB所成的角(用反三角函数值表示);
(Ⅱ)证明BC⊥平面SAB;
(Ⅲ)用反三角函数值表示二面角B-SC-D的大小。

题型:0110 高考真题难度:| 查看答案
已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为

[     ]

A.
B.
C.
D.
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.