在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1

在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1

题型:不详难度:来源:
在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的个数为(  )
A.4 B.3C.2 D.1

答案
A
解析
取特殊值,使M,N分别为线段AB1,BC1上的中点,取B1B的中点为E,连接NE,EM,则NE∥B1C1,ME∥A1B1,又NE∩ME=E,B1C1∩A1B1=B1,故平面MNE∥平面A1B1C1D1,③对;又A1A⊥平面A1B1C1D1,故A1A⊥平面MNE,①对;连接A1B,∵M是A1B的中点,
∴M在A1B上,MN是△A1C1B的中位线,MN∥A1C1,②对;当N与B重合,M与A重合,此时MN与A1C1异面,④对.

举一反三
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
题型:不详难度:| 查看答案
已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

题型:不详难度:| 查看答案
已知两条直线m,n,两个平面α,β.给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m⊂α,n⊂β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确命题的序号是(  )
A.①③B.②④C.①④D.②③

题型:不详难度:| 查看答案
设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若m⊂β,α⊥β,则m⊥α;②若α∥β,m⊂α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )
A.①③B.①②C.③④D.②③

题型:不详难度:| 查看答案
如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.