如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点(1)求证:CE∥平面PA

如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点(1)求证:CE∥平面PA

题型:不详难度:来源:
如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点

(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
答案
(1)见解析  (2)见解析
解析

证明:(1)取PA的中点H,连接EH,DH.

因为E为PB的中点,
所以EH∥AB,EH=AB.
又AB∥CD,CD=AB,
所以EH∥CD,EH=CD.
因此四边形DCEH是平行四边形.
所以CE∥DH.
又DH⊂平面PAD,CE⊄平面PAD,
因此CE∥平面PAD.
(2)因为E,F分别为PB,AB的中点,
所以EF∥PA.
又AB⊥PA,
所以AB⊥EF,
同理可证AB⊥FG.
又EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG,
因此AB⊥平面EFG.
又M,N分别为PD,PC的中点,
所以MN∥CD,又AB∥CD,
所以MN∥AB,
因此MN⊥平面EFG,
又MN⊂平面EMN,
所以平面EFG⊥平面EMN.
举一反三
如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
题型:不详难度:| 查看答案
如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
题型:不详难度:| 查看答案
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.
题型:不详难度:| 查看答案
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE∥平面BCP.
(2)求证:四边形DEFG为矩形.
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
题型:不详难度:| 查看答案
如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.