画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.
题型:不详难度:来源:
画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由. |
答案
解析
F∈CD1、F∈平面ACD1、E∈AC、E∈平面ACD1、E∈BD、E∈平面BDC1、F∈DC1、F∈平面DC1B,则EF为所求.
|
举一反三
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上. (1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由; (2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈,这样的直线有几条,应该如何作图? |
如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点. (1)证明:四边形BCHG是平行四边形. (2)C、D、F、E四点是否共面?为什么? |
如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证: (1)C1、O、M三点共线; (2)E、C、D1、F四点共面. |
已知四棱锥PABCD的顶点P在底面的射影恰好是底面菱形ABCD的两条对角线的交点,若AB=3,PB=4,则PA长度的取值范围为________.
|
给出下列四个命题: ①没有公共点的两条直线平行; ②互相垂直的两条直线是相交直线; ③既不平行也不相交的直线是异面直线; ④不同在任一平面内的两条直线是异面直线. 其中正确命题是________.(填序号) |
最新试题
热门考点