如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上

如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上

题型:不详难度:来源:
如图1,在直角梯形ABCD中,ADBC,∠ADC=90°,BABC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示.点EF分别为棱PCCD的中点.
 
(1)求证:平面OEF∥平面APD
(2)求证:CD⊥平面POF
(3)在棱PC上是否存在一点M,使得MPOCF四点距离相等?请说明理由.
答案
(1)见解析(2)见解析(3)存在
解析
(1)证明:因为点P在平面ADC上的正投影O恰好落在线段AC上,所以PO⊥平面ADC,所以POAC.
因为ABBC,所以OAC的中点,
所以OEPA.
同理OFAD.
OEOFOPAADA
所以平面OEF∥平面PDA.
(2)证明:因为OFADADCD
所以OFCD.
PO⊥平面ADCCD⊂平面ADC
所以POCD.
OFPOO,所以CD⊥平面POF.
(3)存在,事实上记点EM即可.
因为CD⊥平面POFPF⊂平面POF
所以CDPF.
EPC的中点,所以EFPC
同理,在直角三角形POC中,EPECOEPC
所以点E到四个点POCF的距离相等.
举一反三
设直线m与平面α相交但不垂直,则下列说法中正确的是(  )
A.在平面α内有且只有一条直线与直线m垂直
B.过直线m有且只有一个平面与平面α垂直
C.与直线m垂直的直线不可能与平面α平行
D.与直线m平行的平面不可能与平面α垂直

题型:不详难度:| 查看答案
如图,正方体ABCDA1B1C1D1中,EF分别为棱ABCC1的中点,在平面ADD1A1内且与平面D1EF平行的直线(  )
A.有无数条 B.有2条C.有1条D.不存在

题型:不详难度:| 查看答案
如图所示,在四边形ABCD中,ADBCADAB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABCB.平面ADC⊥平面BDC
C.平面ABC⊥平面BDCD.平面ADC⊥平面ABC

题型:不详难度:| 查看答案
如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.
 
(1)证明:A1O⊥平面ABC
(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.
题型:不详难度:| 查看答案
如图,已知四棱锥PABCD的底面为直角梯形,ABCD,∠DAB=90°,PA⊥底面ABCD,且PAADDCAB=1,MPB的中点.

(1)求证:AMCM
(2)若NPC的中点,求证:DN∥平面AMC.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.