.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(1)求证:A1C//平面AB1D;(2)求二面角B—AB1—D的大小;(3)求点C到

.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(1)求证:A1C//平面AB1D;(2)求二面角B—AB1—D的大小;(3)求点C到

题型:不详难度:来源:
.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(1)求证:A1C//平面AB1D;
(2)求二面角B—AB1—D的大小;
3)求点C到平面AB1D的距离.
答案
.过O作OH⊥面ABV,连结VH,
面VAB⊥面ABCD,OH⊥AB,OH⊥面ABV,∴OVH就是VO与VAB所成的角,
∴tan﹤VOH=,∴﹤VOH=300
(2)过B作BM⊥VA,连接MC,∴﹤CMB为B-VA-C的平面角,
∴ tan﹤CMB = ,∴﹤CMB="arctan"
(3)VV—ABCD=  SABCDH= a2 a= a3
解析

举一反三
(本小题满分12分)
如图3,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是

(Ⅰ)求二面角的大小;
(Ⅱ)求点到平面的距离.
题型:不详难度:| 查看答案
((本小题满分12分)
四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,侧棱底面ABCD,E、F分别是C1D1,C1B1的中点,G为CC1上任一点,EC与底面ABCD所成角的正切值是4。

(Ⅰ)确定点G的位置,使平面CEF,并说明理由;
(Ⅱ)求二面角F—CE—C1的余弦值。
题型:不详难度:| 查看答案
如图,ABC和DBC所在的平面互相垂直,且AB=BC=BD,CBA=DBC= 60°,(1) 求证:直线AD⊥直线BC;(2)求直线AD与平面BCD所成角的大小。
题型:不详难度:| 查看答案
.平面内条直线把平面分成部分;条直线把平面分成部分;条直线把平面分成部分。类比空间个平面把空间分成        部分;个平面把空间分成        部分;个平面把空间分成                     部分。
题型:不详难度:| 查看答案
((本小题满分12分)
如图,已知,

(Ⅰ)求证:;          
(Ⅱ) 若,求二面角 的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.