(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。  (1)求证:EF

(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。  (1)求证:EF

题型:不详难度:来源:
(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。
  (1)求证:EF//平面ABC;
(2)求证:平面平面C1CBB1;
(3)求异面直线AB与EB1所成的角。
答案
解:(Ⅰ)在△C1AB中,∵E、F分别是C1A和C1B的中点,
∴EF//AB,
∵ABÌ平面ABC1,
∴EF∥平面AB        C.                     4分
(Ⅱ)∵平面BCC1B1⊥平面ABC,且BCC1B1为矩形
∴BB1⊥AB,
又在△ABC中,AB2 + BC2=" AC2" ,
∴AB⊥BC,∴AB⊥平面C1CBB1,
∴平面EFC1⊥平面C1CBB1 .                 5分
(Ⅲ)∵EF∥AB, ∴∠FEB1是直线AB与EB1所成的角.          2分
又∵ AB⊥平面C1CBB1,∴ EF⊥平面C1CBB1 .
在Rt△EFB1中,EF = , B1F =,
∴tan∠FEB1 = =, ∠FEB1 =
即求异面直线AB与EB1所成的角等于.                                   3分
解析

举一反三
对于平面和共面的直线,下列命题中真命题的是(   )          
A.若所成的角相等,则B.若,则
C.若,则D.若,则

题型:不详难度:| 查看答案
(本题满分12分)

在正三角形中,分别是边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△沿折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)
(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)
题型:不详难度:| 查看答案
(本小题14分)如图,三棱锥中,平面
分别是
的动点,且平面,二面角.
(1)求证:平面
(2)若,求直线与平面所成角的余弦值.
题型:不详难度:| 查看答案
下面几个空间图形中,虚线、实线使用不正确的有                  
题型:不详难度:| 查看答案
异面直线是指
A.不相交的两条直线B.分别位于两个平面内的直线
C.一个平面内的直线和不在这个平面内的直线D.不同在任何一个平面内的两条直线

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.