如图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为60°的二面角,连接PC、PD,在AD

如图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为60°的二面角,连接PC、PD,在AD

题型:不详难度:来源:
如图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为60°的二面角,连接PC、PD,在AD上取一点E使得3AE=ED,连接PE得到如图(图2)的一个几何体.
魔方格

(1)求证:平面PAB⊥平面PCD;
(2)求PE与平面PBC所成角的正弦值.
答案
(1)证明:∵AB⊥PA,AB⊥AD,又二面角P-AB-D为60°
∴∠PAD=60°,
又AD=2PA,∴AP⊥PD
又AB⊥平面APD,又PD⊂平面APD,∴AB⊥PD,
∵AP,AB⊂平面ABP,且AP∩AB=A
∴PD⊥平面PAB,
又PD⊂平面PCD,∴平面PAB⊥平面PCD---------(7分)
(2)设E到平面PBC的距离为h,
∵AE平面PBC,∴A到平面PBC的距离亦为h
连接AC,

魔方格

则VP-ABC=VA-PBC,设PA=2
1
3
×
1
2
×2×2×


3
=
1
3
×
1
2
×2×


7
×h

h=
2


21
7

 设PE与平面PBC所成角为θ,
sinθ=
h
PE
=
2


3


7


3
=
2


7
7
---------------(14分)
举一反三

魔方格
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.魔方格
题型:韶关二模难度:| 查看答案
如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,点D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求证:BD⊥平面POA
(2)设AO∩BD=H,当O为CH中点时,若点Q满足


AQ
=


QP
,求直线OQ与平面PBD所成角的正弦值.

魔方格
题型:茂名二模难度:| 查看答案
等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C (如图2).

魔方格

(1)求证:A1D丄平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为600?若存在,求出PB的长;若不存在,请说明理由.
题型:广州二模难度:| 查看答案
如图,在直棱柱ABCD-A1B1C1D1中,ADBC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(I)证明:AC⊥B1D;
(II)求直线B1C1与平面ACD1所成的角的正弦值.魔方格
题型:湖南难度:| 查看答案
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,ABDC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
题型:天津难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.



2