直线l1:x+my+1=0与l2:x-y+2=0垂直,则m=______.

直线l1:x+my+1=0与l2:x-y+2=0垂直,则m=______.

题型:青浦区一模难度:来源:
直线l1:x+my+1=0与l2:x-y+2=0垂直,则m=______.
答案
∵l2:x-y+2=0的斜率等于1,直线l1:x+my+1=0与l2:x-y+2=0垂直,
故直线l1 的斜率等于-1,即
-1
m
=-1,∴m=1,
故答案为 1.
举一反三
已知抛物线x2=2py(p为常数,p≠0)上不同两点A、B的横坐标恰好是关于x的方程x2+6x+4q=0(q为常数)的两个根,则直线AB的方程为______.
题型:不详难度:| 查看答案
若椭圆C1
x2
4
+
y2
b2
=1(0<b<2)
的离心率等于


3
2
,抛物线C2:x2=2py(p>0)的焦点在椭圆的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(-1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
题型:汕头二模难度:| 查看答案
“m=-1”是“直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0互相平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
题型:不详难度:| 查看答案
在平面直角坐标系xoy中,椭圆C为
x2
4
+y2=1
(1)若一直线与椭圆C交于两不同点M、N,且线段MN恰以点(-1,
1
4
)为中点,求直线MN的方程;
(2)若过点A(1,0)的直线l(非x轴)与椭圆C相交于两个不同点P、Q试问在x轴上是否存在定点E(m,0),使


PE


QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如果直线ax+y+2=0与直线3x-y+2=0垂直,那么a等于(  )
A.3B.-3C.
1
3
D.-
1
3
题型:北京模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.