设点F1(-c,0),F2(c,0)分别是椭圆C:x2a2+y2=1(a>1)的左、右焦点,P为椭圆C上任意一点,且PF1•PF2最小值为0.(1)求椭圆C的方

设点F1(-c,0),F2(c,0)分别是椭圆C:x2a2+y2=1(a>1)的左、右焦点,P为椭圆C上任意一点,且PF1•PF2最小值为0.(1)求椭圆C的方

题型:闸北区一模难度:来源:
设点F1(-c,0),F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且


PF1


PF2
最小值为0.
(1)求椭圆C的方程;
(2)设定点D(m,0),已知过点F2且与坐标轴不垂直的直线l与椭圆交于A、B两点,满足|AD|=|BD|,求m的取值范围.
答案
(1)设P(x,y),则


F1P
=(x+c,y)


F2P
=(x-c,y)



PF1


PF2
=x2+y2-c2=
a2-1
a2
x2+1-c2,x∈[-a,a]

由题意得,1-c2=0⇒c=1⇒a2=2,
∴椭圆C的方程为
x2
2
+y2=1
.                                 
(2)由(1)得F(1,0),设l的方程为y=k(x-1),
代入
x2
2
+y2=1
,得(2k2+1)x2-4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),则x1+x2=
4k2
2k2+1
x1x2=
2k2-2
2k2+1
,∴y1+y2=k(x1+x2-2)=
-2k
2k2+1

设AB的中点为M,则M(
2k2
2k2+1
,-
k
2k2+1
)

∵|AD|=|BD|,∴DM⊥AB,即kDM•kAB=-1,∴
4k2
2k2+1
-2m+
-2k
2k2+1
k=0⇔(1-2m)k2=m

∵直线l与坐标轴不垂直,∴k2=
m
1-2m

m
1-2m
>0⇔
0<m<
1
2
举一反三
在平面直角坐标系xOy中,椭圆C:
x2
m
+
y2
8-m
=1.
(1)若椭圆C的焦点在x轴上,求实数m的取值范围;
(2)若m=6,
①P是椭圆C上的动点,M点的坐标为(1,0),求PM的最小值及对应的点P的坐标;
②过椭圆C的右焦点F 作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:
AB
FN
 是定值,并求出这个定值.
题型:盐城三模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(1,0),短轴的端点分别为B1,B2,且


FB1


FB2
=-a.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且斜率为k(k≠0)的直线l交椭圆于M,N两点,弦MN的垂直平分线与x轴相交于点D.设弦MN的中点为P,试求
|DP|
|MN|
的取值范围.
题型:朝阳区二模难度:| 查看答案
设椭圆的对称中心为坐标原点,其中一个顶点为A(0,2),右焦点F与点B(


2
 , 


2
)
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点(0,-3)的直线l,使直线l与椭圆相交于不同的两点M,N满足|


AM
|=|


AN
|
?若存在,求出直线l的方程;若不存在,请说明理由.
题型:河池模拟难度:| 查看答案
已知以原点为对称中心、F(2,0)为右焦点的椭圆C过P(2,


2
),直线l:y=kx+m(k≠0)交椭圆C于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出 k的取值范围;若不存在,请说明理由.
题型:丰台区一模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),C的右焦点F(1,0),长轴的左、右端点分别为A1,A2,且
.
FA1


FA2
=-1

(Ⅰ)求椭圆C的方程;
(Ⅱ)过焦点F斜率为k(k≠0)的直线l交椭圆C于A,B两点,弦AB的垂直平分线与x轴相交于点D.试问椭圆C上是否存在点E使得四边形ADBE为菱形?若存在,试求点E到y轴的距离;若不存在,请说明理由.
题型:朝阳区二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.