椭圆的中心在坐标原点,离心率等于12,抛物线y2=-4x的准线l过它的一个焦点,则椭圆方程为______.

椭圆的中心在坐标原点,离心率等于12,抛物线y2=-4x的准线l过它的一个焦点,则椭圆方程为______.

题型:不详难度:来源:
椭圆的中心在坐标原点,离心率等于
1
2
,抛物线y2=-4x的准线l过它的一个焦点,则椭圆方程为______.
答案
∵在抛物线y2=-4x中,p=2,其准线是x=1,于是由题意可得椭圆的c=1.
e=
1
2
=
c
a
,∴a=2,b=


3
,故其方程为
x2
4
+
y2
3
=1

故答案为
x2
4
+
y2
3
=1
举一反三
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=


3
2
,且点P(-2,0)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,求证:直线AB恒过一个定点.并求出该定点的坐标.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1的两个焦点分别是F1(-1,0)、F2(1,0),且焦距是椭圆C上一点p到两焦点F1,F2距离的等差中项.
(1)求椭圆C的方程;
(2)设经过点F2的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点Q(x0,y0),求y0的取值范围.
题型:杨浦区一模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)经过点M(1,
3
2
)
,其离心率为
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m  (|k|≤
1
2
)
与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求|OP|的取值范围.
题型:海淀区一模难度:| 查看答案
已知椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)与双曲线G:x2-y2=4,若椭圆E的顶点恰为双曲线G的焦点,椭圆E的焦点恰为双曲线G的顶点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在一个以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B,且


OA


OB
?若存在请求出该圆的方程,若不存在请说明理由.
题型:不详难度:| 查看答案
已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为


10
,过焦点F作直线l,交椭圆于A,B两点.
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)若椭圆上有一点C,使四边形AOBC恰好为平行四边形,求直线l的斜率.
题型:通州区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.