已知点M在椭圆D:x2a2+y2b2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为263的正三角

已知点M在椭圆D:x2a2+y2b2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为263的正三角

题型:不详难度:来源:
已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2


6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若


QP
=2


PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.
答案
(Ⅰ)因为△ABM是边长为
2


6
3
的正三角形
所以圆M的半径r=
2


6
3
,M到y轴的距离为d=


3
2
r=


2
,即椭圆的半焦距c=d=


2

此时点M的坐标为(


2
2


6
3
)
…(2分)
因为点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)

所以
(


2
)
2
a2
+
(
2


6
3
)
2
b2
=1

又a2-b2=c2=2
解得:a2=6,b2=4
所求椭圆D的方程为
x2
6
+
y2
4
=1
…(4分)
(Ⅱ)由题意可知直线l的斜率存在,设直线斜率为k
直线l的方程为y=k(x+1),则有Q(0,k)
设P(x1,y1),由于P、Q、F三点共线,且


QP
=2


PF

根据题意得(x1,y1-k)=2(-x1-1,-y1),解得





x1=-
2
3
y1=
k
3
…(6分)
又P在椭圆D上,故
(-
2
3
)
2
6
+
(
k
3
)
2
4
=1

解得k=±
10


3
3

综上,直线l的斜率为k=±
10


3
3
.…(8分)
(Ⅲ)由(Ⅰ)得:椭圆N的方程为
x2
2
+y2=1
…①,
由于F1(1,0),设直线GK的方程为y=kx-2(k<0)…②,
则直线RS的方程为y=k(x-1)(k<0)…③
设H(x3,y3),K(x4,y4
联立①②消元得:(1+2k2)x2-8kx+6=0,所以x3x4=
6
1+2k2

所以|GH|•|GK|=


x23
+(y3+2)2


x24
+(y4+2)2
=


x23
+(kx3)2


x24
+(kx4)2
=
6(1+k2)
1+2k2
…(10分)
设R(x5,y5),S(x6,y6
联立①③消元得:(1+2k2)x2-4k2x+2k2-2=0
所以x5+x6=
4k2
1+2k2
x5x6=
2(k2-1)
1+2k2
y5y6=k2[x5x6-(x5+x6)+1]=
-k2
1+2k2
3|RF1|•|F1S|=3


(x5-1)2+
y25


(x6-1)2+
y26
=3


y25
+(
y5
k
)
2


y26
+(
y6
k
)
2
=
3(1+k2)
1+2k2
…(13分)
6(1+k2)
1+2k2
=
3(1+k2)
1+2k2
,化简得:k2+1=0,显然无解,
所以满足|GH|•|GK|=3|RF1|•|F1S|的直线GK不存在.…(14分)
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)以双曲线
x2
3
-y2=1
的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.
题型:不详难度:| 查看答案
已知直线l:y=x+


6
,圆O:x2+y2=5,椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)的离心率e=


3
3
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.
题型:菏泽一模难度:| 查看答案
椭圆的两焦点坐标分别为F1(-


3
,0)
F2(


3
,0)
,且椭圆过点(1,-


3
2
)

(1)求椭圆方程;
(2)过点(-
6
5
,0)
作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.
题型:自贡三模难度:| 查看答案
已知椭圆Ω的离心率为
1
2
,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆
x2    
a2
+
 y2   
b2
=1(a>b>0)
上过点(x0,y0)的切线方程为
 x0x   
a2
+
y0y    
b2
=1

①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线y2=2px经过点M(2,-2


2
),椭圆
x2
a2
+
y2
b2
=1的右焦点恰为抛物线的焦点,且椭圆的离心率为
1
2

(1)求抛物线与椭圆的方程;
(2)若P为椭圆上一个动点,Q为过点P且垂直于x轴的直线上一点,
|OP|
|OQ|
=λ(λ≠0),试求点Q的轨迹.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.