已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=14x2的焦点,离心率为255.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=14x2的焦点,离心率为255.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l

题型:东莞二模难度:来源:
已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
1
4
x2
的焦点,离心率为
2


5
5

(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若


MA
=λ1


AF


MB
=λ2


BF
,求证:λ12=-10.
答案
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
抛物线方程化为x2=4y,其焦点为(0,1)
则椭圆C的一个顶点为(0,1),即b=1
e=
c
a
=


a2-b2
a2
=
2


5
5
,∴a2=5,
所以椭圆C的标准方程为
x2
5
+y2=1

(2)证明:易求出椭圆C的右焦点F(2,0),
设A(x1,y1),B(x2,y2),M(0,y0),显然直线l的斜率存在,
设直线l的方程为y=k(x-2),代入方程
x2
5
+y2=1
并整理,
得(1+5k2)x2-20k2x+20k2-5=0
x1+x2=
20k2
1+5k2
x1x2=
20k2-5
1+5k2

又,


MA
=(x1y1-y0)


MB
=(x2y2-y0)



AF
=(2-x1,-y1)


BF
=(2-x2,-y2)
,而


MA
=λ1


AF


MB
=λ2


BF

即(x1-0,y1-y0)=λ1(2-x1,-y1),(x2-0,y2-y0)=λ2(2-x2,-y2
λ1=
x1
2-x1
λ2=
x2
2-x2

所以λ1+λ2=
x1
2-x1
+
x2
2-x2
=
2(x1+x2)-2x1x2
4-2(x1+x2)+x1x2
=-10
举一反三
椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点F1(-2,0),
a2
c
=8
(c为椭圆的半焦距).
(1)求椭圆C的方程;
(2)若M为直线x=8上一点,A为椭圆C的左顶点,连接AM交椭圆于点P,求
PM
AP
的取值范围.
题型:不详难度:| 查看答案
已知椭圆
x2
2b2
+
y2
b2
=1(b>0)

(1)若圆(x-2)2+(y-1)2=
20
3

(2)与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程;
(3)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为60°.求
|MF|
|NF|
的值.
题型:不详难度:| 查看答案
已知圆G:x2+y2-2x-


2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
题型:虹口区三模难度:| 查看答案
在平面直角坐标系xOy中,F1(-4,0),F2(4,0),P是平面上一点,使三角形PF1F2的周长为18.
(1)求点P的轨迹方程;
(2)在P点的轨迹上是否存在点P1、P2,使得顺次连接点F1、P1、F2、P2所得到的四边形F1P1F2P2是矩形?若存在,请求出点P1、P2的坐标;若不存在,请简要说明理由.
题型:不详难度:| 查看答案
已知椭圆的中心在原点,焦点在y轴上,焦距为4,离心率为
2
3

(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆在y轴的正半轴上的焦点为M,又点A和B在椭圆上,且M分有向线段
.
AB
所成的比为2,求线段AB所在直线的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.