以的顶点为焦点,长半轴长为4的椭圆方程为(  )A.B.C.D.

以的顶点为焦点,长半轴长为4的椭圆方程为(  )A.B.C.D.

题型:锦州一模难度:来源:
的顶点为焦点,长半轴长为4的椭圆方程为(  )
答案
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:徐州模拟难度:| 查看答案
题型:不详难度:| 查看答案
题型:南宁二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.
C.D.
已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,


2
2
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:3x-3y-1=0交椭圆C与A、B两点,若T(0,1)求证:|


TA
+


TB
|=|


TA
-


TB
|
中心在原点,一个焦点坐标为(0,5),短轴长为4的椭圆方程为______.
在平面直角坐标系xOy中,已知圆B:(x-1)2+y2=16与点A(-1,0),P为圆B上的动点,线段PA的垂直平分线交直线PB于点R,点R的轨迹记为曲线C.
(1)求曲线C的方程;
(2)曲线C与x轴正半轴交点记为Q,过原点O且不与x轴重合的直线与曲线C的交点记为M,N,连接QM,QN,分别交直线x=t(t为常数,且t≠2)于点E,F,设E,F的纵坐标分别为y1,y2,求y1•y2的值(用t表示).魔方格
在平面直角坐标系xOy中,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为


2
2
,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使


OM
=cosθ


OA
+sinθ


OB

(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2
设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).