设椭圆x2m2+y2n2=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的标准方程为______.

设椭圆x2m2+y2n2=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的标准方程为______.

题型:枣庄一模难度:来源:
设椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,则此椭圆的标准方程为______.
答案
抛物线y2=8x,
∴p=4,焦点坐标为(2,0)
∵椭圆的右焦点与抛物线y2=8x的焦点相同
∴椭圆的半焦距c=2,即m2-n2=4
∵e=
2
m
=
1
2

∴m=4,n=


16-4
=2


3

∴椭圆的标准方程为
x2
16
+
y2
12
=1
故答案为
x2
16
+
y2
12
=1
举一反三
若椭圆C的焦点和顶点分别是双曲线
x2
5
-
y2
4
=1
的顶点和焦点,则椭圆C的方程是______.
题型:上海难度:| 查看答案
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5


2

(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,


3
3
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
题型:淄博二模难度:| 查看答案
直线l:y=k(x-1)过已知椭圆C:
x2
a2
+
y2
b2
=1
经过点(0,


3
),离心率为
1
2
,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且


MA


AF


MB


BF
,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值,否则,说明理由;
(Ⅲ)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.魔方格
题型:淄博二模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为


3
2

(1)求椭圆C的方程;
(2)过点(0,


2
)
且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-
4


2
5
,求直线l的方程.
题型:香洲区模拟难度:| 查看答案
已知椭圆
x2
a
+
y2
b
=1(a>b>0)
过点(1,
3
2
)
,且离心率为
1
2
,A、B是椭圆上纵坐标不为零的两点,若


AF


FB
(λ∈R)
,且|


AF
|≠|


FB
|
,其中F为椭圆的左焦点.
(I)求椭圆的方程;
(Ⅱ)求A、B两点的对称直线在y轴上的截距的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.