已知曲线C1:(a>b>0)所围成的封闭图形的面积为,曲线C1的内切圆半径为,记C2为以曲线C1与坐标轴的交点为顶点的椭圆。(1)求椭圆C2的标准方程;(2)设

已知曲线C1:(a>b>0)所围成的封闭图形的面积为,曲线C1的内切圆半径为,记C2为以曲线C1与坐标轴的交点为顶点的椭圆。(1)求椭圆C2的标准方程;(2)设

题型:山东省高考真题难度:来源:
已知曲线C1(a>b>0)所围成的封闭图形的面积为,曲线C1的内切圆半径为,记C2为以曲线C1与坐标轴的交点为顶点的椭圆。
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线,M是l上异于椭圆中心的点。
(i)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(ii)若M是l与椭圆C2的交点,求△AMB的面积的最小值。
答案
解:(1)由题意得

解得
因此所求椭圆的标准方程为
(2)(i)假设AB所在的直线斜率存在且不为零,设AB所在直线方程为
解方程组
所以
,由题意知
所以

因为l是AB的垂直平分线,
所以直线l的方程为

因此

所以

又当或不存在时,上式仍然成立
综上所述,M的轨迹方程为
(2)当k存在且时,由(i)得
解得
所以
由于




当且仅当时等号成立,即时等号成立,
此时面积的最小值是

当k不存在时,
综上所述,的面积的最小值为
举一反三
已知椭圆C:,其相应于焦点F(2,0)的准线方程为x=4。
(1)求椭圆C的方程;
(2)已知过点F1(-2,0)倾斜角为θ的直线交椭圆C于A,B两点,求证:
(3)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求|AB|+|DE|的最小值。
题型:安徽省高考真题难度:| 查看答案
设椭圆C:过点M(,1),且左焦点为
(1)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足,证明:点Q总在某定直线上。
题型:安徽省高考真题难度:| 查看答案
设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在,说明理由。
题型:山东省高考真题难度:| 查看答案
已知O(0,0),B(1,0),C(b,c)是△OBC的三个顶点。
(1)写出△OBC的重心G,外心F,垂心H的坐标,并证明G,F,H三点共线;
(2)当直线FH与OB平行时,求顶点C的轨迹。
题型:北京高考真题难度:| 查看答案
已知O(0,0),B(1,0),C(b,c)是△OBC的三个顶点,
(Ⅰ)写出△OBC的重心G,外心F,垂心H的坐标,并证明G,F,H三点共线;
(Ⅱ)当直线FH与OB平行时,求顶点C的轨迹。
题型:北京高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.