已知抛物线y2=4x的焦点F,过F且垂直于x轴的直线交该抛物线于A、B两点.若椭圆C:x2a2+y2b2=1(a>b>0)的右焦点与点F重合,右顶点与A、B构成

已知抛物线y2=4x的焦点F,过F且垂直于x轴的直线交该抛物线于A、B两点.若椭圆C:x2a2+y2b2=1(a>b>0)的右焦点与点F重合,右顶点与A、B构成

题型:福建模拟难度:来源:
已知抛物线y2=4x的焦点F,过F且垂直于x轴的直线交该抛物线于A、B两点.若椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点与点F重合,右顶点与A、B构成等腰直角三角形,则椭圆的离心率为______.
答案
∵F为抛物线y2=4x的焦点,∴F(1,0)
∵过F且垂直于x轴的直线交该抛物线于A、B两点,∴A(1,2),B(1,-2),|AB|=4
∵椭圆C
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为点F,∴椭圆中c=1
又∵椭圆的右顶点与A、B构成等腰直角三角形,∴a-c=
1
2
|AB|=2,
∴a=3,椭圆的离心率e=
1
3

故答案为
1
3
举一反三
已知椭圆
x2
4
+y2=1
的左、右顶点分别为M、N,P为椭圆上任意一点,且直线PM的斜率的取值范围是[
1
2
,2],则直线PN的斜率的取值范围是(  )
A.[
1
8
1
2
]
B.[-
1
2
,-
1
8
]
C.[-8,-2]D.[2,8]
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点D(1,


2
2
),焦点为F1,F2,满足


DF1
.


DF2
=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点(2,0)的直线与椭圆C相交于两点A、B,P为椭圆上一点,且满足


OA
+


OB
=t


OP
(其中O为坐标原点),求整数t的最大值.
题型:日照二模难度:| 查看答案
抛物线的顶点在坐标原点,焦点是椭圆x2+2y2=8的一个焦点,则此抛物线的焦点到其准线的距离等于(  )
A.8B.6C.4D.2
题型:西城区二模难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1
的两个焦点为F1(-c,0)、F2(c,0),c2是a2与b2的等差中项,其中a、b、c都是正数,过点A(0,-b)和B(a,0)的直线与原点的距离为


3
2

(1)求椭圆的方程;
(2)点P是椭圆上一动点,定点A1(0,2),求△F1PA1面积的最大值;
(3)已知定点E(-1,0),直线y=kx+t与椭圆交于C、D相异两点.证明:对任意的t>0,都存在实数k,使得以线段CD为直径的圆过E点.
题型:静安区一模难度:| 查看答案
在平面直角坐标系xoy中,动点P在椭圆C1
x2
2
+y2=1上,动点Q是动圆C2:x2+y2=r2(1<r<2)上一点.
(1)求证:动点P到椭圆C1的右焦点的距离与到直线x=2的距离之比等于椭圆的离心率;
(2)设椭圆C1上的三点A(x1,y1),B(1,


2
2
),C(x2,y2)与点F(1,0)的距离成等差数列,线段AC的垂直平分线是否经过一个定点为?请说明理由.
(3)若直线PQ与椭圆C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.
题型:茂名二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.