已知P为椭圆x225+y29=1上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,求△F1PF2的面积.

已知P为椭圆x225+y29=1上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,求△F1PF2的面积.

题型:不详难度:来源:
已知P为椭圆
x2
25
+
y2
9
=1
上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,求△F1PF2的面积.
答案
∵a=5,b=3
∴c=4,即|F1F2|=8.
设|PF1|=t1,|PF2|=t2
则根据椭圆的定义可得:t1+t2=10①,
在△F1PF2中∠F1PF2=60°,
所以根据余弦定理可得:t12+t22-2t1t2•cos60°=82②,
由①2-②得t1•t2=12,
所以由正弦定理可得:SF1PF2=
1
2
t1t2•sin60°=
1
2
×12×


3
2
=3


3

所以△F1PF2的面积3


3
举一反三
已知函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A.若点A在直线mx+ny+1=0上,其中mn>0,当
1
m
+
2
n
有最小值时,椭圆
x2
m2
+
y2
n2
=1
的离心率为______.
题型:不详难度:| 查看答案
椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的短轴长是常数,当两准线间的距离取得最小值时,椭圆的离心率为(  )
A.
1
2
B.


2
2
C.
1
3
D.


3
3
题型:不详难度:| 查看答案
以F1(-1,0)、F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是 ______.
题型:不详难度:| 查看答案
设F1、F2分别是椭圆
x2
4
+y2=1的左、右焦点.
(1)若P是该椭圆上的一个动点,求向量乘积


PF1


PF2
的取值范围;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
题型:不详难度:| 查看答案
已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.