已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为______.
题型:不详难度:来源:
已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为______. |
答案
依题意可知∠F1PF2=90°|F1F2|=2c, ∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c 由椭圆定义可知|PF1|+|PF2|=2a=( +1)c ∴e==-1 故答案为:-1. |
举一反三
椭圆162+9y2=144的焦点坐标______. |
已知双曲线过(3,-2),且与椭圆4x2+9y2=36有相同的焦点,求双曲线方程. |
已知+=1(a>b>0),M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( ) |
已知椭圆+=1(a>b>0),F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是______. |
最新试题
热门考点