过点F(1,0)且与直线l:x=-1相切的动圆圆心的轨迹方程是(    )

过点F(1,0)且与直线l:x=-1相切的动圆圆心的轨迹方程是(    )

题型:江苏同步题难度:来源:
过点F(1,0)且与直线l:x=-1相切的动圆圆心的轨迹方程是(    )
答案
y2=4x
举一反三
如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB
(1)若M为定点,证明:直线EF的斜率为定值;
(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.
题型:江苏同步题难度:| 查看答案
已知抛物线C1的顶点在坐标原点,它的准线经过椭圆C2(a>b>0)的一个焦点
F1且垂直于C2的两个焦点所在的轴,若抛物线C1与椭圆C2的一个交点是M().求抛物线C1及椭圆C2的方程.
题型:江苏同步题难度:| 查看答案
以坐标轴为对称轴,以原点为顶点且过圆x2+y2﹣2x+6y+9=0的圆心的抛物线的方程是 [     ]
A.y=3x2或y=﹣3x2
B.y=3x2
C.y2=﹣9x或y=3x2
D.y=﹣3x2或y2=9x
题型:期末题难度:| 查看答案
抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x﹣n)g(x)在x=a和x=b处取到极值.
(1)用m,x表示f(x)=0.
(2)比较a,b,m,n的大小(要求按从小到大排列).
(3)若,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)
题型:月考题难度:| 查看答案
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.