设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.
题型:不详难度:来源:
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________. |
答案
[-1,1] |
解析
易知抛物线y2=8x的准线x=-2与x轴的交点为Q(-2,0),于是,可设过点Q(-2,0)的直线l的方程为y=k(x+2)(由题可知k是存在的),联立k2x2+(4k2-8)x+4k2=0.其判别式为Δ=(4k2-8)2-16k4=-64k2+64≥0,可解得-1≤k≤1 |
举一反三
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).
(1)求y1+y2的值; (2)若y1≥0,y2≥0,求△PAB面积的最大值. |
已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________. |
已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________. |
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0). (1)求抛物线C的标准方程; (2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点. |
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.
(1)求证:A、M、B三点的横坐标成等差数列; (2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值. |
最新试题
热门考点