在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).(1)求抛物线C的标准方程;(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标

在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).(1)求抛物线C的标准方程;(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标

题型:不详难度:来源:
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
答案
(1)y2=4x(2)见解析
解析
(1)设抛物线的标准方程为y2=2px(p>0),则=1,p=2,所以抛物线方程为y2=4x.
(2)抛物线C的准线方程为x=-1,设M(-1,y1),N(-1,y2),其中y1y2=-4,直线MO的方程:y=-y1x,将y=-y1x与y2=4x联立解得A点坐标.同理可得B点坐标,则直线AB的方程为:,整理得(y1+y2)y-4x+4=0,故直线AB恒过定点(1,0).
举一反三
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.

(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.

(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
题型:不详难度:| 查看答案
在平面直角坐标系中,抛物线上纵坐标为的点到焦点的距离
,则焦点到准线的距离为(  )
A.B.C.D.

题型:不详难度:| 查看答案
已知直线和直线,抛物线上一动点到直线 
和直线的距离之和的最小值是(    )
A.B.2 C.D.3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.