如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.图6(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与

如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.图6(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与

题型:不详难度:来源:
如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

图6
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
答案
(1)x2=4y(2)见解析
解析
解:(1)依题意,|OB|=8,∠BOy=30°.
设B(x,y),则x=|OB|sin30°=4,y=|OB|cos30°=12.
因为点B(4,12)在x2=2py上,所以(4)2=2p×12,解得p=2.
故抛物线E的方程为x2=4y.
(2)由(1)知y=x2,y′=x.
设P(x0,y0),则x0≠0,且l的方程为y-y0x0(x-x0),即y=x0x-.

所以Q.
假设以PQ为直径的圆恒过定点M,由图形的对称性知M必在y轴上,设M(0,y1),令·=0对满足y0 (x0≠0)的x0,y0恒成立.
由于=(x0,y0-y1),.
·=0,得-y0-y0y1+y1=0.
即(+y1-2)+(1-y1)y0=0.(*)
由于(*)式对满足y0 (x0≠0)的y0恒成立,所以
解得y1=1.
故以PQ为直径的圆恒过y轴上的定点M(0,1).
举一反三
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
题型:不详难度:| 查看答案
抛物线的焦点到准线的距离是(   ).
A.B.C.D.

题型:不详难度:| 查看答案
.抛物线的焦点坐标为_________
题型:不详难度:| 查看答案
若抛物线y2=4x的焦点是F准线是l,则过点F和点M(4,4)且与准线l相切的圆有(  )
A.0个B.1个C.2个D.4个

题型:不详难度:| 查看答案
已知抛物线C:y=4x,F是C的焦点,过焦点F的直线l与C交于 A,B两点,O为坐标原点。
(1)求·的值;(2)设=,求△ABO的面积S的最小值;
(3)在(2)的条件下若S≤,求的取值范围。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.