如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AH

如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AH

题型:不详难度:来源:
如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.
答案
(1)见解析(2)16 ,(1,±2)
解析
(1)证明:由抛物线定义得|AH|=|AF|,∴∠AHF=∠AFH.
又∵四边形AHFC是平行四边形,∴HF∥AC,∴∠AHF=∠EAD,∠AFH=∠BAD.
综上可得∠BAD=∠EAD.
(2)易知焦点F(1,0),准线l方程为x=-1,设A点坐标为 (a≠0),
则直线AB方程为4ax-(a2-4)y-4a=0(包括AB⊥x轴的情况),
结合y2=4x得4a2x2-(a4+16)x+4a2=0,
根据抛物线定义,可知|AB|=xA+xB+2=+2=+2≥4(当且仅当a=±2时等号成立).
另外,结合kAD=kHF=-,可得直线AD方程为y=-x++a,
结合y2=4x得ay2+8y-a3-8a=0,由于yD+yA=-
∴yD=--a.又∵∠BAD=∠EAD,
∴D点到直线AB的距离即为D点到直线AE的距离,即d=|yD-yA|=≥8(当且仅当a=±2时等号成立).
∴S△ABD·|AB|·d≥×4×8=16(当且仅当a=±2时取“=”号).
此时A点坐标为(1,±2).
举一反三
如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.
题型:不详难度:| 查看答案
(本小题满分12分)
在直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间。
(1)为使物体落在D内,求a的取值范围;
(2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由。
题型:不详难度:| 查看答案
已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为
A.1B.2C.3 D.4

题型:不详难度:| 查看答案
抛物线上纵坐标为的点到焦点的距离为2.
(Ⅰ)求的值;
(Ⅱ)如图,为抛物线上三点,且线段 与轴交点的横坐标依次组成公差为1的等差数列,若的面积是面积的,求直线的方程.

题型:不详难度:| 查看答案
过抛物线X2=2py(p>0)的焦点作斜率为1的直线与该抛物线交与A,B两点,A,B在x轴上的正射影分别为C,D,若梯形的面积为则p=____
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.