证明:以抛物线焦点弦为直径的圆与抛物线的准线相切

证明:以抛物线焦点弦为直径的圆与抛物线的准线相切

题型:不详难度:来源:
证明:以抛物线焦点弦为直径的圆与抛物线的准线相切
答案
证明略
解析
为抛物线的焦点弦,F为抛物线的焦点,点分别是点在准线上的射影,弦的中点为M,则,点M到准线的距离为以抛物线焦点弦为直径的圆总与抛物线的准线相切
举一反三
过点(0, 2)与抛物线只有一个公共点的直线有           (      )
A. 1条B. 2条C. 3条D.无数条.

题型:不详难度:| 查看答案
设抛物线的轴和它的准线交于E点,经过焦点F的直线交抛物线于P、Q
两点(直线PQ与抛物线的轴不垂直),则的大小关系为 (    )
A.B.
C.D.不确定

题型:不详难度:| 查看答案
过抛物线的焦点F作一直线交抛物线于P、Q两点,若PF与FQ的长分别为p、q,则等于                    (     )
A.B.C.D.

题型:不详难度:| 查看答案
若抛物线的顶点在原点,开口向上,F为焦点,M为准线与Y轴的交点,A为抛物线上一点,且,求此抛物线的方程
题型:不详难度:| 查看答案
已知点P(x,y)对应的复数z满足, 则点Q(x+y,xy)的轨迹是 (      ).   
A.圆B.抛物线的一部分C.椭圆D.双曲线的一部

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.