在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程

题型:不详难度:来源:
在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.
答案
(1)(x+2)2+(y-2)2=8.   (2)存在,Q
解析
(1)设圆C的圆心为A(p,q),
则圆C的方程为(x-p)2+(y-q)2=8.
因为直线y=x与圆C相切于坐标原点O,
所以O在圆C上,且直线OA垂直于直线y=x.
于是有
由于点A(p,q)在第二象限,故p<0.
所以圆C的方程为(x+2)2+(y-2)2=8.
(2)因为椭圆+=1与圆C的一个交点到椭圆两焦点距离之和为10,所以2a=10⇒a=5,故椭圆右焦点为F(4,0).
若圆C上存在异于原点的点Q(x0,y0)到椭圆右焦点F的距离等于线段OF的长,则有|QF|=|OF|,于是(x0-4)2+=42,且+≠0.①
由于Q(x0,y0)在圆上,故有(x0+2)2+(y0-2)2=8.②
解①和②得
故圆C上存在满足条件的点Q.
举一反三
(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.
题型:不详难度:| 查看答案
过点与抛物线有且只有一个交点的直线有(  )
A.4条    B.3条   C.2条  D.1条

题型:不详难度:| 查看答案
(2011•山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)

题型:不详难度:| 查看答案
如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP"Q的面积S的最大值,并写出对应的圆Q的标准方程.

题型:不详难度:| 查看答案
如图,一个底面半径为的圆柱被与其底面所成角为的平面所截,截面是一个椭圆,当时,这个椭圆的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.