已知椭圆:和圆:,过椭圆上一点引圆的两条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围是(     )A.B.C.D.

已知椭圆:和圆:,过椭圆上一点引圆的两条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围是(     )A.B.C.D.

题型:不详难度:来源:
已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.

答案
D
解析

试题分析:因为,所以,及圆的性质可得
所以,所以,所以,又因为
所以.
点评:本题考查直线与椭圆的位置关系,考查椭圆的几何性质,考查学生的计算能力,属于
基础题.
举一反三
已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.
题型:不详难度:| 查看答案
已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.
题型:不详难度:| 查看答案
已知椭圆:的离心率为,过右焦点且斜率为的直线交椭圆两点,为弦的中点,为坐标原点.
(1)求直线的斜率
(2)求证:对于椭圆上的任意一点,都存在,使得成立.
题型:不详难度:| 查看答案
以抛物线的焦点为圆心,且过坐标原点的圆的方程为(   )
A.B.
C.D.

题型:不详难度:| 查看答案
已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若△是锐角三角形,则该双曲线离心率的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.