如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2

如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2

题型:不详难度:来源:
如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双 曲线的离心率为           .
答案

解析

试题分析:根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.
解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+|BF2|2=|AF2|2,∴∠ABF2=90°,又由双曲线的定义得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,∴|AF1|+3-4=5-|AF1|,∴|AF1|=3.∴|BF1|-|BF2|=3+3-4=2a,
∴a=1.在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,∵|F1F2|2=4c2,∴4c2=52,∴c=,∴双曲线的离心率 ,故答案为
点评:本题考查双曲线的简单性质,考查转化思想与运算能力,求得a与c的值是关键,属于中档题.
举一反三
已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,是直线上的一个动点,求的最小值,并求出此时点的坐标.
题型:不详难度:| 查看答案
设双曲线的顶点为,该双曲线又与直线交于两点,且为坐标原点)。
(1)求此双曲线的方程;
(2)求
题型:不详难度:| 查看答案
如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.
题型:不详难度:| 查看答案
已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.

题型:不详难度:| 查看答案
已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.