试题分析:(1)因为椭圆E: (a,b>0)过M(2,),N(,1)两点, 所以解得所以椭圆E的方程为 (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, 则△=,即 , 要使,需使,即,所以,所以又, 所以,所以,即或, 因为直线为圆心在原点的圆的一条切线, 所以圆的半径为,,, 所求的圆为,此时圆的切线都满足或, 而当切线的斜率不存在时切线为与椭圆的两个交点为或满足, 综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且. 点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备。(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性。 |