三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.

三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.

题型:不详难度:来源:
三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.
答案
设记G(x,y),C(x0,y0),
由重心坐标公式得
x=
-2+x0
3
y=
-2+y0
3

所以x0=3x+2,y0=3y+2
因为C(x0,y0),
在y=x2+1上
所3y+2=(3x+2)2+1整理得y=3(x+
2
3
2-
1
3

所以G点的轨迹为开口向上的抛物线.
举一反三
如图,椭圆C:
x2
a2
+
y2
b2
=1
的顶点为A1,A2,B1,B2,焦点为F1,F2,,|A1B1|=


7
,S▱A1B1A2B2=2S▱B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,且|


OP
|=1
,是否存在上述直线l使


AP


PB
=1成立?若存在,求出直线l的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
与抛物线C2:x2=2py(p>0)的一个交点为M.抛物线C2在点M处的切线过椭圆C1的右焦点F.
(1)若M(2,
2


5
5
)
,求C1和C2的标准方程;
(II)若b=1,求p关于a的函数表达式p=f(a).
题型:不详难度:| 查看答案
已知双曲线的两条渐近线方程为直线l1:y=-
x
2
l2:y=
x
2
,焦点在y轴上,实轴长为2


3
,O为坐标原点.
(1)求双曲线方程;
(2)设P1,P2分别是直线l1和l2上的点,点M在双曲线上,且


P1M
=2


MP2
,求三角形P1OP2的面积.
题型:不详难度:| 查看答案
已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(I)求椭圆的标准方程;
(II)求过A(1,1)与椭圆相切的直线方程;
(III)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.
题型:不详难度:| 查看答案
设x,y∈R,


i


j
为直角坐标平面内x轴y轴正方向上的单位向量,若


a
=x


i
+(y+2)


j


b
=x


i
+(y-2)


j
,且|


a
|+|


b
|=8
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点AB,满足(1)直线AB过点(0,3),(2)若


OP
=


OA
+


OB
,则OAPB为矩形,试求AB方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.