如图,已知点B是椭圆x2a2+y2b2=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,BP•BM=9,

如图,已知点B是椭圆x2a2+y2b2=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,BP•BM=9,

题型:不详难度:来源:
如图,已知点B是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PMx轴,


BP


BM
=9,若点P的坐标为(0,t),则t的取值范围是(  )
A.0<t<3B.0<t≤3C.0<t<
3
2
D.0<t≤
3
2
魔方格
答案
由题意可得B(0,-b)
∴直线MB的方程为y=x-b
联立方程





y=x-b
x2
a2
+
y2
b2
=1
 可得(a2+b2)x2-2ba2x=0
∴M(
2ba2
a2+b2
b(a2-b2)
a2+b2
),
∵PMx轴
∴P(0,
b(a2-b2)
a2+b2

.
BP
=(0,
b(a2-b2)
a2+b2
+b),
.
BM
=(
2ba2
a2+b2
b(a2-b2)
a2+b2
+b)


BP


BM
=9,
由向量的数量积的定义可知,|
.
BP
||
.
BM
|cos45°=9
即|
.
BP
|=3
∵P(0,t),B(0,-b)
∴t=3-b=
b(a2-b2)
b2+a2

∴2a2b=3a2+3b2a2=
3b2
2b-3

∵t=3-b<b
∴b
3
2
,t
3
2

由a>b得a2=
3b2
2b-3
>b2
∴b<3
∴t>0
综上所述0<t<
3
2

故选C
举一反三
已知双曲线C:
x2
4
-
y2
5
=1
的右焦点为F,过F的直线l与C交于两点A、B,若|AB|=5,则满足条件的l的条数为______.
题型:不详难度:| 查看答案
若椭圆和双曲线具有相同的焦点F1,F2,离心率分别为e1,e2,P是两曲线的一个公共点,且满足PF1⊥PF2,则
1
e21
+
1
e22
的值为(  )
A.4B.2C.1D.
1
2
题型:不详难度:| 查看答案
若F1、F2是椭圆
x2
4
+y2=1
的左、右两个焦点,M是椭圆上的动点,则
1
|MF1|
+
1
|MF2|
的最小值为______.
题型:普陀区一模难度:| 查看答案
点M是抛物线y=x2上的动点,点M到直线2x-y-a=0(a为常数)的最短距离为


5
,则实数a的值为(  )
A.-3B.-4C.5D.6
题型:不详难度:| 查看答案
直线4kx-4y-k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+
1
2
=0的距离等于(  )
A.
7
4
B.2C.
9
4
D.4
题型:菏泽一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.