小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义

小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义

题型:不详难度:来源:
小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为.
(1)确定的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.

答案
(1),补全频率分布直方图如图所示.

(2)分布列为
 
.
解析

试题分析:(1) “非网购红人”与“网购红人”人数比恰为,又总人数为60,由此可得一个方程组,解这个方程组可得:,进而可得:.这样便可补全频率分布直方图;
(2)选出的人中,“网购红人”有4人,“非网购红人”有6人,从中取3人,故“网购红人”的人数的可能取值为0,1,2,3,这是一个超几何分布,由超几何分布的概率公式可得其分布列,进而求得其期望.
(1) “非网购红人”与“网购红人”人数比恰为,所以
,解这个方程组得:.从而可得:.
补全频率分布直方图如图所示:

(2)选出的人中,“网购红人”有4人,“非网购红人”有6人,故的可能取值为0,1,2,3,
因为
所以的分布列为:
 
.
举一反三
电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”,并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?

题型:不详难度:| 查看答案
(12分)(2011•福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
题型:不详难度:| 查看答案
(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n
1
2
3
4
5
成绩xn
70
76
72
70
72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
题型:不详难度:| 查看答案
(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号
A1
A2
A3
A4
A5
A6
A7
A8
 
 
得分
15
35
21
28
25
36
18
34
运动员编号
A9
A10
A11
A12
A13
A14
A15
A16
 
 
得分
17
26
25
33
22
12
31
38
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间
[10,20)
[20,30)
[30,40]
人数
 
 
 
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.
题型:不详难度:| 查看答案
某中学一位高三班主任对本班名学生学习积极性和对待班级工作的态度进行长期的调查,得到的统计数据如下表所示:
 
积极参加班级工作
不太主动参加班级工作
合计
学习积极性高
18
7
25
学习积极性一般
6
19
25
合计
24
26
50
 
(1)如果随机调查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太积极参加班级工作且学习积极性一般的学生的概率是多少?
(2)学生的积极性与对待班级工作的态度是否有关系?说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.