某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组;第二组, ,第五组.右图是按上述分组方法得到的频率分布直方图若成绩大
题型:不详难度:来源:
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组;第二组, ,第五组.右图是按上述分组方法得到的频率分布直方图若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是 . |
答案
解析
试题分析:根据频率分步直方图做出这组数据的成绩在[14,16)内的人数为50×0.16+50×0.38,这是频率,频数和样本容量之间的关系解:由频率分布直方图知,成绩在[14,16)内的,人数为50×0.16+50×0.38=27(人)∴该班成绩良好的人数为27人.故答案为:27. 点评:解决此类问题的关键是准确掌握利用频率分布直方图进行分析并且运用公式进行正确运算 |
举一反三
在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。 (1)根据以上数据建立一个的列联表;
P(k2>k)
| 0.50
| 0.40
| 0.25
| 0.15
| 0.10
| 0.05
| 0.025
| 0.010
| 0.005
| 0.001
| k
| 0.455
| 0.708
| 1.323
| 2.072
| 2.706
| 3.841
| 5.024
| 6.635
| 7.879
| 10.83
| (2)检验性别与休闲方式是否有关系。(本题可以参考两个分类变量x和y有关系的可信度表:)
| 2
| 4
| 5
| 6
| 8
|
| 30
| 40
| 60
| 50
| 70
|
|
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图; (Ⅱ)根据频率分布直方图,估计本次考试的平均分; (Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。 |
某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取( ) 名学生 A 20 B 10 C 25 D 15 |
五个数1,2,3,4,a的平均数是3,则a=____,这五个数的标准差是_________. |
数据 平均数为6,标准差为2,则数据 的平均数为 ,方差为 。 |
最新试题
热门考点