甲、乙、丙、丁4名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到社区的概率;(2)求甲、乙两人不在同一个社区的概率

甲、乙、丙、丁4名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到社区的概率;(2)求甲、乙两人不在同一个社区的概率

题型:不详难度:来源:
甲、乙、丙、丁4名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量为四名同学中到社区的人数,求的分布列和的值.
答案
(1)甲、乙两人同时到社区的概率是
(2)甲、乙两人不在同一社区的概率是
(3)随机变量可能取的值为1,2.的分布列是:






 

解析

试题分析:(1)由古典概型概率的计算得.
(2)由古典概型,甲、乙两人在同一社区为事件,那么,根据对立事件的概率公式,甲、乙两人不在同一社区的概率是
(3)随机变量可能取的值为1,2.事件“”是指有个同学到社区,由古典概型概率的计算即可得到分布列,进一步计算得数学期望.
试题解析:(1)记甲、乙两人同时到社区为事件,那么
即甲、乙两人同时到社区的概率是.     2分
(2)记甲、乙两人在同一社区为事件,那么,    4分
所以,甲、乙两人不在同一社区的概率是.    6分
(3)随机变量可能取的值为1,2.事件“”是指有个同学到社区,
.     8分
所以,     10分






的分布列是:
.      12分
举一反三
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求的期望.
题型:不详难度:| 查看答案
在一个2×2列联表中,由其数据计算得χ2≈13.097,则认为两个变量间有关系的犯错概率不超过________.
题型:不详难度:| 查看答案
在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为________(结果用最简分数表示).
题型:不详难度:| 查看答案
现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是______.
题型:不详难度:| 查看答案
甲、乙两支足球队鏖战90分钟踢成平局,加时赛30分钟后仍成平局,现决定各派5名队员,每人射一点球决定胜负,设甲、乙两队每个队员的点球命中率均为0.5.
(1)不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率;
(2)求甲、乙两队各射完5个点球后,再次出现平局的概率.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.