甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:甲运动员射击环数频数频率7100

甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:甲运动员射击环数频数频率7100

题型:不详难度:来源:
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
甲运动员
射击环数
频数
频率
7
10
0.1
8
10
0.1
9
x
0.45
10
35
y
合计
100
1
乙运动员
射击环数
频数
频率
7
8
0.1
8
12
0.15
9
z
 
10
 
0.35
合计
80
1
若将频率视为概率,回答下列问题:
(1)求甲运动员射击1次击中10环的概率.
(2)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率.
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及E(ξ).
答案
(1) 0.35    (2) 0.992    (3) ξ的分布列是
ξ
0
1
2
3
P
0.01
0.11
0.4
0.48
2.35
解析
由题意得x=100-(10+10+35)=45,
y=1-(0.1+0.1+0.45)=0.35.
因为乙运动员的射击环数为9时的频率为1-(0.1+0.15+0.35)=0.4,所以z=0.4×=32.
由上可得表中x处填45,y处填0.35,z处填32.
(1)设甲运动员射击1次击中10环为事件A,则P(A)=0.35,即甲运动员射击1次击中10环的概率为0.35.
(2)设甲运动员射击1次击中9环为事件A1,击中10环为事件A2,则甲运动员在1次射击中击中9环以上(含9环)的概率为P(A1∪A2)=P(A1)+P(A2)=0.45+0.35
=0.8,
故甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率P=1-[1-P(A1∪A2)]3=1-0.23=0.992.
(3)ξ的可能取值是0,1,2,3,则
P(ξ=0)=0.22×0.25=0.01,
P(ξ=1)=×0.2×0.8×0.25+0.22×0.75=0.11,
P(ξ=2)=0.82×0.25+×0.8×0.2×0.75=0.4,
P(ξ=3)=0.82×0.75=0.48.
所以ξ的分布列是
ξ
0
1
2
3
P
0.01
0.11
0.4
0.48
E(ξ)=0×0.01+1×0.11+2×0.4+3×0.48=2.35.
举一反三
一个口袋装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸2个球(每次摸奖后放回),2个球颜色不同则为中奖.
(1)试用n表示一次摸奖中奖的概率.
(2)若n=5,求3次摸奖的中奖次数ξ=1的概率及数学期望.
(3)记3次摸奖恰有1次中奖的概率为P,当n取多少时,P最大?
题型:不详难度:| 查看答案
1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是(  )
A.B.C.D.

题型:不详难度:| 查看答案
甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:
(1)甲投进2球且乙投进1球的概率;
(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.
题型:不详难度:| 查看答案
从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(  )
A.B.C.D.

题型:不详难度:| 查看答案
若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为    .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.