甲、乙、丙三人参加北大自主招生考试,分理论考试和面试两部分,每部分成绩只记“合格”与“不合格”,两部分都合格就被录取.甲、乙、丙三人理论考试中合格的概率分别为3

甲、乙、丙三人参加北大自主招生考试,分理论考试和面试两部分,每部分成绩只记“合格”与“不合格”,两部分都合格就被录取.甲、乙、丙三人理论考试中合格的概率分别为3

题型:不详难度:来源:
甲、乙、丙三人参加北大自主招生考试,分理论考试和面试两部分,每部分成绩只记“合格”与“不合格”,两部分都合格就被录取.甲、乙、丙三人理论考试中合格的概率分别为
3
5
3
4
2
3
,面试合格的概率分别为
9
10
5
6
7
8
,所有考试是否合格相互之间没有影响.
(1)甲、乙、丙三人谁被录取的可能性最大?
(2)求这三人都被录取的概率.
答案
分别记“甲、乙、丙被录用”为事件A、B、C,且A、B、C相互独立.
(1)甲、乙、丙被录用,即三人既通过理论考试又通过面试,
P(A)=
3
5
9
10
=
27
50
;P(B)=
3
4
5
6
=
5
8
=
30
48
;P(C)=
2
3
7
8
=
7
12
=
28
48

比较可得P(B)>P(C)>P(A),
所以乙被录用的可能性最大.
(2)记“三人都被录用”为事件D,即A、B、C同时发生,即D=ABC,
P(D)=P(ABC)=P(A)•P(B)•P(C)=
27
50
5
8
7
12
=
63
320

答:(1)乙录取的可能性最大;(2)三人都被录取的概率为
63
320
举一反三
某足球俱乐部2006年10月份安排4次体能测试,规定每位运动员一开始就要参加测试,一旦某次测试合格就不必参加以后的测试,否则4次测试都要参加,若运动员李明4次测试每次合格的概率依次组成一个公差为
1
8
的等差数列,他第一次测试合格的概率不超过
1
2
,且他直至第二次测试才合格的概率为
9
32

(1)求李明第一次参加测试就合格的概率P1
(2)求李明10月份共参加了三次测试的概率.
题型:不详难度:| 查看答案
桂林的“两江四湖”(漓江、桃花江、榕湖、杉湖、桂湖、木龙湖)使桂林“城在景中,景在城中,城景交融”的特点得到了淋漓尽致的展现某旅行社为了吸引游客,宣传桂林,从一艘游船中抽出9人,其中有3名男士和6名女士,进行有奖问答,每次只随机选1人作答,任一个人都可能被多次选中,只选两次且每次被选中与否互不影响
(Ⅰ)求两次都选中甲的概率;
(Ⅱ)求男士被选中次数不少于女士被选中次数的概率.
题型:桂林二模难度:| 查看答案
小张有一只放有a个红球、b个黄球、c个白球的箱子,且a+b+c=6(a,b,c∈N),小刘有一只放有3个红球、2个黄球、1个白球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时小张胜,异色时小刘胜.
(1)用a、b、c表示小张胜的概率;
(2)若又规定当小张取红、黄、白球而胜的得分分别为1分、2分、3分,否则得0分,求小张得分的期望的最大值及此时a、b、c的值.
题型:不详难度:| 查看答案
某厂生产的A产品按每盒10件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒10件A产品中任抽4件进行检验,若次品数不超过1件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒A产品中有2件次品.
(1)求该盒产品被检验合格的概率;
(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.
题型:蓟县一模难度:| 查看答案
袋中装着标有数字1,2,3,4的卡片各1张,甲从袋中任取2张卡片(每张卡片被取出的可能性都相等),并记下卡面数字和为X,然后把卡片放回,叫做一次操作.
(1)求在一次操作中随机变量X的概率分布和数学期望E(X);
(2)甲进行四次操作,求至少有两次X不大于E(X)的概率.
题型:苏州二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.