两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的概率为(   )A.B.C.D.

两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的概率为(   )A.B.C.D.

题型:不详难度:来源:
两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的概率为(   )
A.B.C.D.

答案
B  
解析

试题分析:两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的位置处在中间一米的位置,所以由几何概型概率的计算公式得,故选B。
点评:简单题,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
举一反三
如左图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为____________.
题型:不详难度:| 查看答案
某某种饮料每箱6听,如果其中有两听不合格产品.
(1)质检人员从中随机抽出1听,检测出不合格的概率多大?;                    
(2)质检人员从中随机抽出2听,设为检测出不合格产品的听数,求的分布列及数学期望.
题型:不详难度:| 查看答案
已知内一点,且,现随机将一颗豆子撒在内,则豆子落在内的概率为     .
题型:不详难度:| 查看答案
某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在区域返券60元;停在区域返券30元;停在区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量的分布列和数学期望.
题型:不详难度:| 查看答案
表示函数的导数,在区间上,随机取值, 的概率为            ;
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.