某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮,假设某选手正确回答每个问题的概率都是0.8,且每个问题的
题型:同步题难度:来源:
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮,假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于( )。 |
答案
0.128 |
举一反三
某射手每次射击击中目标的概率是,且各次射击的结果互不影响。 (1)假设这名射手射击5次,求恰有2次击中目标的概率; (2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3 次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分。记ξ为射手射击3次后的总得分数,求ξ的分布列。 |
如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元件相互独立。已 知T1,T2,T3中至少有一个能通过电流的概率为0.999。 |
|
(1)求p; (2)求电流能在M与N之间通过的概率; (3)ξ表示T1,T2,T3,T4中能通过电流的元件个数,求ξ的期望。 |
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为 |
|
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。 |
中央电视台“星光大道”节目共有四关,每期都有5 名选手参加,每关淘汰一名选手,最后决出周冠军,经选拔,某选手将参加下一期的“星光大道”, (1)求该选手进入第四关才被淘汰的概率; (2)求该选手至多进入第三关的概率。 |
下列每对事件中,哪些是互斥事件?哪些是相互独立事件? (1)从10 000张有奖销售的奖券中抽取1张,该张奖券中一等奖与该张奖券中二等奖; (2)有奖储蓄中不同开奖组的两个户头同中一等奖; (3)一个布袋里有3个白球,2个红球,“从中任意取1个球是白球”与“把取出的球放回后,再任取1个球是白球”; (4)一个布袋里有3个白球,2个红球,“从中任意取1个球是白球”与“取出球不放回,再从中任意取1个球是红球”。 |
最新试题
热门考点