一个口袋中装有个红球(且)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用表示一次摸奖中奖的概率;(Ⅱ)若,求三次摸奖(每次摸奖后放回)恰有

一个口袋中装有个红球(且)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用表示一次摸奖中奖的概率;(Ⅱ)若,求三次摸奖(每次摸奖后放回)恰有

题型:不详难度:来源:
一个口袋中装有个红球()和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(Ⅰ)试用表示一次摸奖中奖的概率
(Ⅱ)若,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为.当取多少时,最大?
答案
,当时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大
解析
(Ⅰ)一次摸奖从个球中任选两个,有种,
它们等可能,其中两球不同色有种,………………………2分
一次摸奖中奖的概率.………………………4分
(Ⅱ)若,一次摸奖中奖的概率,………………………6分
三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是
.  ………………………8分
(Ⅲ)设每次摸奖中奖的概率为,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为
, ……………………12分
,知在为增函数,在为减函数,当取得最大值.又,解得.…………14分
答:当时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大.
【方法探究】本题是一个在等可能性事件基础上的独立重复试验问题,体现了不同概型的综合.第Ⅲ小题中的函数是三次函数,运用了导数求三次函数的最值.如果学生直接用代替,函数将比较烦琐,这时需要运用换元的方法,将看成一个整体,再求最值.
举一反三
设一次试验成功的概率为p,现进行16次独立重复试验.当p=__________时,成功次数的标准差最大,其最大值为__________.
题型:不详难度:| 查看答案
一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数是一个随机变量,则=______________。(填计算式)
题型:不详难度:| 查看答案
(12分)甲乙两个射手,甲击中靶心的概率为P,乙击中靶心的概率为,每次射击互相不受影响,且甲射击两次均未命中靶心的概率为。 (1)求甲击中靶心的概率P; (2)求乙射击两次至少命中一次的概率; (3)若甲、乙二人各射击2次,求两人共命中2次的概率。
题型:不详难度:| 查看答案
(本题满分13分)甲、乙两颗卫星同时监测台风,根据长期经验得知,甲、乙预报台风准确的概率分别为0.8和0.75.求:(1) 在同一次预报中,甲、乙两卫星只有一颗预报准确的概率;(2) 若甲独立预报4次,至少有3次预报准确的概率.
题型:不详难度:| 查看答案
(13分)某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,
面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人
面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合
格互不影响,求:(I)至少有1人面试合格的概率;(II)签约人数的分布列和数学期望。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.