已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).关于偶函数f(x)

已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).关于偶函数f(x)

题型:丰台区二模难度:来源:
已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).
关于偶函数f(x)的图象G和直线l:y=m(m∈R)的3个命题如下:
①当a=2,m=0时,直线l与图象G恰有3个公共点;
②当a=3,m=
1
4
时,直线l与图象G恰有6个公共点;
③∀m∈(1,+∞),∃a∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③
答案
设x∈[0,2),则-x∈(-2,0],故f(-x)=x(2-x),
由函数为偶函数可知,当x∈[0,2)时,f(x)=x(2-x),
故当x∈[0,+∞)时,f(x)=





x(2-x),x∈[0,2)
(x-2)(a-x),x∈[2,+∞)

①当a=2,m=0时,x∈[0,+∞)时,f(x)=





x(2-x),x∈[0,2)
-(x-2)2,x∈[2,+∞)

令其等于0可得,x=0,或x=2,由函数图象的对称性可知,
此时直线l与图象G恰有3个公共点-2,0,2,故①正确;
②当a=3,m=
1
4
时,x∈[0,+∞)时,f(x)=





x(2-x),x∈[0,2)
(x-2)(3-x),x∈[2,+∞)

令其等于
1
4
可得x=
2-


3
2
,或x=
2+


3
2
,或x=
5
2
,由函数图象的对称性可知,
此时直线l与图象G恰有6个公共点-
2-


3
2
,-
2+


3
2
,-
5
2
2-


3
2
2+


3
2
5
2
,故②正确;
③∀m∈(1,+∞),令f(x)=





x(2-x),x∈[0,2)
(x-2)(a-x),x∈[2,+∞)
=m,
∵当x∈[0,2)时,f(x)=x(2-x)=-(x-1)2+1≤1,
故只能让(2-x)(a-x)=m,(m>1),当△=(a-2)2-4m>0,
即(a-2)2>4,即a>4,或a<0时,
可解得x=
a+2-


(a-2)2-4m
2
,或x=
a+2+


(a-2)2-4m
2

故由函数图象的对称性可知直线l与图象G交于4个点,由小到大排列为:x1=-
a+2+


(a-2)2-4m
2

x2=-
a+2-


(a-2)2-4m
2
,x3=
a+2-


(a-2)2-4m
2
,x4=
a+2+


(a-2)2-4m
2

而x4-x3=


(a-2)2-4m
,x3-x2=a+2-


(a-2)2-4m

由x3-x2=x4-x3,化简可得3a2-20a+12=16m>16,解得a<
10-2


22
3
,或a>
10+2


22
3

故可取a=8>
10+2


22
3
,当然满足a∈(4,+∞),使距离相等,
故对∀m∈(1,+∞),∃a=8∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等,故③正确.
故选D
举一反三
下列命题正确的序号为______.
①函数y=ln(3-x)的定义域为(-∞,3];
②定义在[a,b]上的偶函数f(x)=x2+(a+5)x+b最小值为5;
③若命题P:对∀x∈R,都有x2-x+2≥0,则命题¬P:∃x∈R,有x2-x+2<0;
④若a>0,b>0,a+b=4,则
1
a
+
1
b
的最小值为1.
题型:济南一模难度:| 查看答案
设数列{an}满足当ann2(n∈N*)成立时,总可以推出an+1>(n+1)2成立.下列四个命题:
(1)若a3≤9,则a4≤16.
(2)若a3=10,则a5>25.
(3)若a5≤25,则a4≤16.
(4)若an≥(n+1)2,则an+1n2
其中正确的命题是______.(填写你认为正确的所有命题序号)
题型:静安区一模难度:| 查看答案
对于非空实数集A,记A*={y|∀x∈A,y≥x}.设非空实数集合M、P满足:M⊆P,且若x>1,则x∉P.现给出以下命题:
①对于任意给定符合题设条件的集合M、P,必有P*⊆M*
②对于任意给定符合题设条件的集合M、P,必有M*∩P≠∅;
③对于任意给定符合题设条件的集合M、P,必有M∩P*=∅;
④对于任意给定符合题设条件的集合M、P,必存在常数a,使得对任意的b∈M*,恒有a+b∈P*
其中正确的命题是(  )
A.①③B.③④C.①④D.②③
题型:长春一模难度:| 查看答案
有下列四个命题:
①函数y=x+
1
4x
(x≠0)的值域是[1,+∞);
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则P的轨迹是抛物线;
③直线AB与平面α相交于点B,且AB与α内相交于点C的三条互不重合的直线CB、CE、CF所成的角相等,则AB⊥α;
④若f(x)=x2+bx+c(b,c∈R),则f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)].
其中正确的命题的编号是______.
题型:许昌三模难度:| 查看答案
在下列命题中,
①“α=
π
2
”是“sinα=1”的充要条件;
(
x3
2
+
1
x
)4
的展开式中的常数项为2;
③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=
1
2
-p

其中所有正确命题的序号是(  )
A.②B.③C.②③D.①③
题型:朝阳区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.